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Based on the deformation kinetics approach, the theoretical derivation is given of the empirical WLF-
equation of the time–temperature equivalence. The same is done for annealing at glass transition. The
derivation provides a general theory for any loading history and replaces the inconsistent free volume
model.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Time dependent behaviour is explained by the equilibrium the-
ory of deformation kinetics [1] and it never is necessary to apply
the phenomenological relaxation time spectra. It is, on the con-
trary, easy to show [2] that the expansion of the kinetic equation
gives the Rouse spectrum and e.g. the Zimm spectrum, explaining
the success of the use of spectra. The apparent need of linear visco-
elastic spectra thus indicates non-linear behaviour according to
deformation kinetics. This exact approach also applies for glass
transition and annealing and there is no need of the phenomeno-
logical free volume model and Doolittle viscosity equation giving
no explanation of the WLF-equation. This follows from the theoret-
ical derivation based on the, in Appendix A discussed, deformation
kinetics of structural changes and the constitutive equations of
Appendix B. Annealing has to be discussed because the determina-
tion of the constants of the WLF-equation and of the glass-transi-
tion temperature Tg is based on annealing experiments. Two
connected cases are regarded, one with the Arrhenius shift and
the other with a dominating WLF-shift. The results are given in
the conclusions.

2. Derivation of the WLF-equation of the time–temperature
equivalence

As known, viscosity curves, compliance curves, etc. measured at
different temperatures may show the same shape independent of
the temperature and can be shifted along a logarithmic time or
frequency axis to form one curve, predicting the behaviour after
long times at the lower temperature. Near glass-transition temper-

ature, the horizontal shift factor ln(aT) of the displacement of the
curves, by temperature difference, along the log-time axis follows
WLF-equation, Eq. (4), applying for amorphous uncross-linked
polymers and other super-cooled non-crystallizing liquids. Accord-
ing to the classical model, e.g. in Ref. [3, p. 225], this shift factor is
equal to the differences in relaxation times on logarithmic scale:

lnðaTÞ ¼ lnðtr1Þ � lnðtr2Þ; ð1Þ

where tr1 and tr2 are the relaxation times at temperatures T1 and T2

(see Fig. 1).
It is assumed for the viscosity g that:

lnðg1Þ � lnðg2Þ ¼ lnðtr1Þ � lnðtr2Þ: ð2Þ

With the Doolittle viscosity equation:

lnðgÞ ¼ lnðAÞ þ Bðv � v f Þ=v f ¼ A0 þ Bv=v f ¼ A0 þ B=f ; ð3Þ

in which f = vf/v is the free volume fraction of volume v, the shift
factor aT becomes:

lnðaTÞ ¼ lnðtr1Þ � lnðtr2Þ ¼ lnðg1Þ � lnðg2Þ

¼ B=f1 � B=f2B
f2 � f1

f1f2
¼ ðB=f1Þ � ðT2 � T1Þ
ðf1=aÞ þ ðT2 � T1Þ

¼ c1ðT2 � T1Þ
c2 þ T2 � T1

; ð4Þ

where: f2 = f1 + a(T2 � T1) and a is the difference of the thermal
expansion coefficients below and above the glass-transition tem-
perature Tg, determining the increase in free volume.

Because this free volume model is a phenomenological model,
there are many inconsistencies. For instance:

– The necessity of volume changes without shear, (because of the
independency of the molecular weight), while the WLF-equation
also applies for shear.
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– The value of a, being an order too low for e.g. inorganic glasses,
or still more for e.g. cellulose derivatives and orders to low for
wood material, shows the amount of free volume increase not
to be a parameter but an accompanying phenomenon.

– Eq. (2): ln(ln(tr1/tr2) = ln(g1/g2) can not true for a horizontal shift
of the ln(g)-plot along the frequency axis as shown in Fig. 1.
Because when ln(g1) at T1 is equal to ln(g2) at T2, then also
tr1 = tr2 which can not be right for shifted positions.

– Also the Doolittle equation, Eq. (3), can not be applied for a hor-
izontal shift.

If ln(g1) = ln(g2), then f1 = f2 (constant independent of
temperature).

The Doolittle equation thus should be replaced by the empirical
relation:

g ¼ A00 � expðB=f Þ �xtr ; ð5Þ

in order to show the shift and to be proportional to tr according to
the classical Eq. (2). Then, when ln(g1) = ln(g2), Eq. (5) becomes:

lnðaTÞ ¼ lnðx2Þ � lnðx1Þ ¼ lnðtr1Þ=ðtr2Þ þ Bð1=f1 � 1=f2Þ; ð6Þ

equal to Eqs. (15) and (6) thus is explained by deformation kinetics
providing the theoretical derivation of the WLF-equation as follows.

According to Eq. (a6) of Appendix A, the rate equation for struc-
tural change is:

dN
dt
¼ B � N � 2 sinh

rvk0

Nk

� �
� B � N exp

rvk0

Nk

� �
: ð7Þ

This equation is extensively verified e.g. as damage equation for the
change of bonds N, also within transition zones with changing N
and k. For instance in Ref. [1, p. 51] k = k0(1 + C0(T � T0) � q/q0) ap-
plies exactly at temperature T within the temperature range of
the transition for the compression strength of wood at moisture
content q. Because the WLF-equation shows about the same activa-
tion volume parameter value: rvk/Nk = 2.3 � c1 = 2.3 � 17.44 = 40,
characteristic for self-diffusion, creep and creep to failure, the same
mechanism and parameter form can be expected to apply at this
‘melting’ of the secondary bonds, which can be given as:

k0 ¼ kg þ bðT � TgÞ: ð8Þ

The same applies for the concentration N, as also applied in the
empirical Eq. (4):

N ¼ Ng þ aðT � TgÞ: ð9Þ

These linear changes with temperature T are shown in Ref. [1] to be
in accordance with the thermodynamics of molecular activation.
The activation volume term of Eq. (7) then is

rk0

kN
� ¼ r

k
� kg þ bðT � TgÞ
Ng þ aðT � TgÞ

: ð10Þ

In this equation is Ng the site concentration at Tg, the glass-transi-
tion temperature.

Because of the stress dependency of ‘N’, comparison of viscosi-
ties at different temperatures is difficult. Therefore, the shift of the
curve of the apparent creep modulus (the inverse of the creep com-
pliance) along the time axis is chosen as simple illustration of the
behaviour. The rate of bond breaking and bond reformation in
shifted position dN/dt is proportional to the viscous strain rate
and neglecting the minor important temperature dependent pre-
exponential terms, the steady creep strain rate _e is according to
Eq. (7) in the form of Eq. (a5) of Appendix A:

_e ¼ A expðurÞ ¼ ðexpðurÞÞ=tr; ð11Þ

where tr is the relaxation time. Integration of Eq. (11) gives: e = (ex-
p(ur)) � t/tr and the apparent creep modulus is: E = r/e = r � tr/
(texp(ur)).

Thus, at the same loading r (which should be kept the same be-
cause of the stress dependency of N), the shift of the E-plot follows
from:

lnðE1Þ � lnðE2Þ ¼ lnðt2=t1Þ þ lnðtr1=tr2Þ þ /2r� /1r: ð12Þ

For a shift of the plot along the time axis, a value ln(E1) at temper-
ature T1 must be equal to ln(E2) at temperature T2. Thus: ln(E1) �
ln(E2) = 0, (see Fig. 2) or according to Eq. (12):

lnðt1=t2Þ ¼ lnðtr1=tr2Þ þ /2r� /1r: ð13Þ

In this equation is:

/2r� /1r ¼
rk02
N2k
� rk01

N1k

¼ r
k
� kg þ bðT2 � TgÞ

N2
� kg þ bðT1 � TgÞ

N1

� �

¼ r � ðbNg � akgÞ � ðT2 � T1Þ
k � N1N2

¼ rkg

kN1
� ððbNg=akgÞ � 1Þ � ðT2 � T1Þ

ðN1=aÞ þ T2 � T1
; ð14Þ

because: N2 = Ng + a(T2 � Tg) = Ng + a(T2 � T1) + a(T1 � Tg) = N1 +
a(T2 � T1).

With n1 = rkg/kN1 and m = bNg/akg � 1, Eq. (13) becomes
according to Eq. (14):

Fig. 2. Temperature shift of the apparent creep modulus E, (T2 > T1).

Fig. 1. Temperature shift of the viscosity plot along the frequency axis.
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lnðaTÞ ¼ ln
t1

T2

� �
¼ ln

tr1

tr2

� �
þ n1m � ðT2 � T1Þ
ðN1=aÞ þ ðT2 � T1Þ

¼ ln
tr1

tr2

� �
þ c1ðT2 � T1Þ

c2 þ T2 � T1
; ð15Þ

giving the corrected, general form of the WLF-equation. In Eq. (15)
is mainly:

ln
tr1

tr2

� �
� H

kT1
� H

kT2
; ð16Þ

giving the Arrhenius shift and thus a combined Arrhenius–WLF-
shift always applies:

lnðaTÞ �
H

kT1
� H

kT2
þ c1ðT2 � T1Þ

c2 þ T2 � T1
; ð17Þ

being noticeable when both amounts are comparable near transi-
tion (e.g. for methacrylate polymers, see Ref. [3]). The WLF-shift
thus only approximately applies when the enthalpy H is small.
The Arrhenius shift in the transition zone applies separately when
c1 = 0, thus when m = 0 and thus when: bNg = akg, giving:

dk � Ng

dT
¼ dN � kg

dT
: ð18Þ

Because N is proportional to the free volume Eq. (18) states that the
relative increase of the activation volume with temperature is pro-
portional to the relative increase of the free volume. This is e.g. the
case for glass. When the WLF-shift applies, thus when there is a
relative higher increase of specific activation volume k/kg with re-
spect to the increase of specific free volume N/Ng, this will be due
to an increase of the density of active sites. If at a certain tempera-
ture step, the effective distance between the sites is halved, the
number of sites is doubled and ‘m’ can be expected to be:
m = bNg/a kg � 1 = @(k/kg)/@ (N/Ng) � 1 = 2 � 1 = 1.

Eq. (15) then, due to this site multiplication, also can be written
as:

lnðaTÞ ¼ ln
t1

t2

� �
¼ ln

tr1

tr2

� �
þ n1N1

1
N1
� 1

N2

� �
; ð19Þ

explaining the extended empirical Eq. (6) when f is replaced by N.
By Eq. (14), it is shown that in the WLF-equation any reference

temperature T1 can be chosen in stead of Tg, when also Ng is re-
placed by N1. Further it follows from this derivation, that, although
c1 and c2 of Eq. (15) are temperature dependent, depending on the
choice of T1, the product c1c2 is constant, temperature independent,
because:

c1 � c2 ¼ m � n N1

a
¼ m

rkg

kN1
� N1

a
¼ m

rkg

ka
¼ m

rkg

kNg

Ng

a

¼ m � ng
Ng

a
: ð20Þ

In the equations above is: H the enthalpy and k, Boltzmann’s con-
stant. The temperature T is in K and ‘N’ is the concentration of mo-
bile segments and not the free volume concentration and thus a is
not necessarily the difference of the thermal expansion coefficients
below and above the transition temperature.

3. Annealing of amorphous solids

3.1. Arrhenius temperature dependence

When an amorphous material, (equilibrated far above Tg), is
suddenly cooled near Tg, the liquid-like molecular adjustment to
a new equilibrium becomes slow. The system is under internal
stress and annealing is a process relieving the stress when the sys-
tem passes to equilibrium. Accompanying this relaxation, some

properties of the system (as: birefringence, specific volume, viscos-
ity, concentration, etc.) change with time. This is discussed in
Appendix B, where it shown that one and the same equation de-
scribes all these types of changes.

According to Appendix B, the rate equation of viscous flow at
annealing is:

_ev ¼ �2Bev sinhð/KevÞ: ð21Þ

Performing the division 1/sinh(x), or:

1
ex � e�x

¼ e�x þ e�3x þ e�5x þ . . . ;

Eq. (21) becomes:

dlnðevÞ � ðe�/Kev þ e�3/KePv þ e�5/Kev þ � � �Þ ¼ �Bdt;

giving as solution (ev0 > ev):

B � t ¼
X1
n¼0

ðE1ð/Kevð1þ 2nÞÞ � E1ð/Kev0ð1þ 2nÞÞÞ; ð22Þ

being a row solution of one process. Fitting this equation shows that
there always is a high internal stress on the sites. For these high val-
ues of /Kev a more simple solution is possible because Eq. (21) then
becomes:

d lnðevÞ
dt

¼ �Be/Kev ; ð23Þ

or: dlnðevÞ � e�/Kev ¼ B � dt, or integrated:

E1ð/KevÞ � E1ð/Kev0Þ ¼ Bt; ð24Þ

where E1(x) is the exponential integral: E1ðxÞ ¼
R1

x
e�s

s ds. Thus:

/Kev ¼ E�1
1 ðE1ð/Kev0Þ þ BtÞ: ð25Þ

In Ref. [4], measurements are given of the birefringence and density
of a crown glass and Eq. (23) or Eq. (b5) apples exactly with a cor-
relation close to 1 in the given temperature range between 490 and
540 �C (see Fig. 3).

The test-specimens showed mutually variability of the parame-
ters. Every specimen is an unique giant molecule. The average va-
lue of /Kev0 = /r0, from the fit of stress relaxation and of the
volume contraction data, was 4.7. However, there might be a sud-
den change of /Kev0, between 520 and 530 �C, from about 5 to
nearly halve this value, indicating two processes acting. More data
are necessary to confirm this. The variability of /Kev0 among the
test-specimens is a property of glasses having a structure depend-
ing on the thermal history. This also applies for the viscosity, spe-
cific heat, specific volume, index of refraction, etc. Eq. (24) can be
written for higher values of /Kev as:

E1ð/KevÞ � E1ð/Kev0Þ �
expð�/KevÞ

/Kev
� expð�/Kev0Þ

/Kev0
¼ Bt;

or:

ev

ev0
� 1� 1

/Kev0
lnð1þ B/Kev t expð/Kev0ÞÞ: ð26Þ

After the delay time, the value 1//Kev0 is the slope of the approxi-
mate straight line on ln(t) scale. This slope has to be constant inde-
pendent of temperature and stress to have shifted lines along the
time axis at different temperatures. The independency of stress
means that in /Kec0 = /r0 = r0k/NkT, the number of sites N is pro-
portional to the maximal initial stress r0. This time–stress equiva-
lence combined with the time–temperature equivalence is
mentioned in Ref. [5, p. 94], where it is found that high strain has
the same effect on aging as an increase in temperature. The time–
stress equivalence is an important property of e.g. building materi-
als, making it possible to determine the long term strength by
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constructing the master creep curve at constant temperature (see
e.g. [1, p. 70]).

From Eq. (26) follows for the shift along the time axis at differ-
ent temperatures: ev1/ev01 � ev2/ev02 = 0, that B1/Kev1t1 = B2/Kev2T2

or: B1/Kev10(ev1/ev10)t1 = B2/Kev20 (ev2/ev20)t2 or: B1t1 = B2t2, giving
the Arrhenius shift:

lnðt1Þ � lnðt2Þ ¼ lnðB2Þ � lnðB1Þ ¼ H0=kT1 � H0=kT2: ð27Þ

3.2. WLF temperature dependence

With reference to the equilibrium values Ne and using Eq. (19),
Eq. (7) becomes:

dN
dt
¼ �BðN � NeÞ � exp neNe

1
Ne
� 1

N

� �� �
; ð28Þ

with: ne = rkg/kNe and N � Ne as active amount of sites.
Eq. (28) can not be solved in terms of familiar functions and

solutions in the form of infinite series can be obtained that can
be tabulated, just like is done with sin(x), that represents an infi-
nite series as solution of its appropriate differential equation. How-
ever, also a precise approximation is possible as follows:

Eq. (28) can be written:

d
dt

1
N

� �
¼ B

1
Ne
� 1

N

� �
Ne

N
exp neNe

1
Ne
� 1

N

� �� �
; ð29Þ

or:

ds
dt
¼ �Bs

Ne

N
expðsÞ;

where:

s ¼ neNe
1

Ne
� 1

N

� �
;

or:

dlnðsÞ � expð�sÞ ¼ �B � Ne

N
� dt: ð30Þ

At the end stage of the process Ne/N � 1 and integration of Eq. (30)
then gives:

E1ðsÞ � E1ðs0Þ ¼ Bt; ð31Þ

where E1(x) is the exponential integral.
More general the solution is: E1ðsÞ � E1ðs0Þ ¼ BtNe=N, with a

weighted mean value N. For high values of ‘s’ E1(s) = exp(s)/s and
the solution then becomes: e�s=s� e�s0=s0 ¼ BtNe=N, being
approximately:

Ne�s � N0e�s0 ¼ BnNet ¼ B0t; ð32Þ

because for high values of s0 and s is: s ¼ neð1� ne=NÞ ¼ neð1�
ne=NÞ � n, about constant and the best estimate of N is N in the first
term and N0 in the second term.

Because Eq. (31) is the solution at the safe side and Eq. (32) the
solution at the unsafe side, the mean of both equations can be ta-
ken as total solution of Eq. (29):

Ne�s � N0e�s0 þ E1ðsÞ � E1ðs0Þ ¼ B00t ¼ t=tr ð33Þ

The proof that this is right, follows from differentiation of Eq. (33).
This gives Eq. (30) with a small negligence of (N � Ne)/nNe

(�(N � Ne)/40Ne) with respect to 1.
Examples of curve fitting to Eq. (33) of materials showing the

WLF-shift at annealing, as glucose, Polystyrene, Polyvinyl acetate,
are given in Ref. [3]. There also Fig. 4, of A Kovacs is given, showing
a perfect fit by the theoretical Eq. (33).

4. Conclusion

– Not the volume effect, but the structural change equation (Eq.
(7), Eqs. (21), (28) or Eq. (b5)) of the equilibrium theory of
molecular deformation kinetics, as treated in Ref. [1], which is
shown to explain all aspects of time dependent behaviour of
wood, is shown here to also give the theoretical explanation of
the empirical WLF-equation and of the volume change and
stress relaxation at annealing.

– The form of the WLF-equation is explained by the properties of
the activation volume parameters near transition, as given by
Eq. (10).

– It is shown by Eq. (17) that the WLF-shift is accompanied by the
Arrhenius shift. The right WLF-shift has to be done on an by a
factor exp(H/kT) reduced curve.

– The constant value of rkg/kNg, or the proportionality of Ng (the
concentration of sites) with the initial applied stress r, is a

Fig. 4. Isothermal volume contraction of glucose measured after sudden cooling to
the temperatures indicated from [3] (test-points and theory: Eq. (33)).

Fig. 3. Density increase and stress decrease during annealing of crown glass. The
theoretical curves follow from Eq. (24).
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similar property of the activation volume as applies for glasses,
wood, concrete and some metals [1] which explains the time–
stress equivalence.

– The equations show that always high internal stresses are acting
even at the end of stress relaxation, probably by the high molec-
ular attraction forces in the voids. The decrease of stress then is
due to a decrease of restrained voids.

– The WLF-shift is due to site multiplication with temperature
increase near Tg.

– The WLF temperature shift applies, when the increase of specific
activation volume k/kg is twice the increase of specific free vol-
ume N/Ng with temperature.

– The Arrhenius temperature shift in the transition zone applies
when the increase of the specific activation volume with tem-
perature is proportional to the increase of the specific free
volume.

Appendix A. Basic equation of structural change

As discussed in Ref. [1], the reaction rate equation for structural
change:

dq=dt ¼ B � q � 2 sinhðfaAak=ðkTÞÞ; ða1Þ

can be expressed in the concentration term:

q ¼ nakAa=k1; ða2Þ

where k is the jump distance of the activated unit; Aa, the cross-sec-
tion of that unit; k1 the distance between the activated sites, and Na,
the number of these sites per unit area. Then Na/k1 = Nt is the num-
ber of activated elements per unit volume. The work of the stress fa

on the activation unit is: faAak.
The equivalent work by the part of the mean macro stress r that

acts at the site is r times the unit area thus is:

rv � 1 � 1 � k ¼ NafaAak or : f aAak ¼ rvk=Na: ða3Þ

Also the chemical work, expressed as an equivalent chemical driv-
ing stress, can be added as stress to the external stress. Eq. (a1) thus
becomes:

dðNakAa=k1Þ=dt ¼ B � ðNakAa=k1Þ � 2 sinhðrk=ðNaktÞÞ: ða4Þ

d(NakAa/k1)/dt can be the rate of increase of activation volume. If
this is proportional to the free volume, this term also gives the rate
of free volume increase. NakAa/k1 also may be the mean viscous
strain per unit area and Eq. (a4) then becomes:

_ev ¼ 2Bev sinhð/KevÞ:

For pure creep, at bond breaking and bond reformation in a shifted
position, the number of bonds or sites remains constant and Eq. (a4)
becomes:

_ev ¼ �2Bev0 sinhð/KevÞ � �Bev0 expð/KevÞ: ða5Þ

For a process of changing site density at annealing Eq. (a4) becomes
with k = k0T because of the entropic driving force:

dN=dt ¼ B � N � 2 sinhðrvk0=ðNkÞÞ � B � N expðrvk0=ðNkÞÞ: ða6Þ

This last approximation of 2sinh(x) � exp(x) follows from the deri-
vation of the WLF-equation showing always a high internal stress
on the sites.

Appendix B. Basic equation of annealing relaxation

The following mechanism scheme is able to explain the mea-
surements. At suddenly cooling, the shrinkage and configuration-
ally change is confined by strong side bonds in the same way as

crossing molecules bridging voids. It follows from the theory that
the internal stress on these sites is always high and thus the cross-
ing molecules are always under high pressure by the molecular
attraction forces of the void boundaries trying to close the void.
A segmental jump of the highest loaded crossing unit will unload
this unit but increases the load on the adjacent crossing units caus-
ing the next one to be high loaded. The segmental jumps cause a
decrease of the void volume (free volume) as well as a decrease
of the number of jumping elements. This causes a process of
decreasing sites according to Eq. (a6) also by the decreasing void
volume, a mean stress decrease in the visco-elastic material sur-
rounding the voids. The rate of decrease of the void volume deter-
mines the rate of viscous displacement and thus the rate of density
increase and a relief of the elastic stress in the surrounding mate-
rial and a description is possible in terms of elastic and viscous
strains, e and ev of that material. The stress on the elastic material
of the unit cross-section is r � rv and the strain: e = (r � rv)/E2,
where E2 is the modulus of elasticity of the elastic material. This
strain causes a stress on the viscous sites of rv = (e � ev)E1 where
E1 is the equivalent modulus of elasticity of the elastic material
at the site.

These constitutive equations are the same as given by the non-
linear three-element analogy of Fig. 5, applied to annealing.

At a sudden cooling and no external loading, the free spring can
be assumed to shorten directly what is not followed by the dash-
pot, and there is an internal stress

rv ¼ E1ðev � eÞ: ðb1Þ

This is in equilibrium with the force on the parallel spring. Thus:

rv ¼ E2e; ðb2Þ

and from Eqs. (b1) and (b2) follows that:

ðE1 þ E2Þe ¼ E1ev or : rv ¼ E2e ¼
E1E2

E1 þ E2
ev ¼ Kev : ðb3Þ

The strain rate of the non-linear Maxwell element, for a structural
change process, is:

_ev ¼ �2Bev sinhð/KevÞ � �Bev expð/KeÞ: ðb4Þ

According to Eq. (b3), this equation also can be written in r = rv:

_r ¼ �Br expð/rÞ: ðb5Þ

giving the stress relaxation of annealing.
Eq. (b5) is the stress relaxation equation for high stresses, that

does not only apply at the start, but also at the end of the relaxa-

Fig. 5. Three-element model.
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tion process when r approaches zero. As discussed before, this is
due to the remaining high loaded units crossing the voids.

As discussed in Appendix A, a segmental jump of k, of the bridg-
ing segments, decreases the void volume with kAv when Av is the
surface of the bridged void. The relative decrease of the free vol-
ume then is nv Avk/k1, when Nv is the number of adjacent voids
per unit cross-section and k1 the distance perpendicular. This de-
crease of the free volume is Nv Av times the viscous strain k/k1 thus
is proportional to viscous strain ev. In Eq. (b4), ev can be replaced by
the free volume change being the same as the total volume change
(as contraction or density increase). The same equation gives in the
form of Eq. (b5) the stress relaxation. Because the birefringence
(mm/mm) is proportional to the stress (for most real glasses
0.1 n/mm2 produces a birefringence of 3.10�7), Eq. (b5) also gives
the decrease of the birefringence. Further, when the equation is

written in r/r0, it also gives the change of the relaxation modulus:
(r/e0)/(r0/e0), or the change of the viscosity: ðr= _e0Þ=ðr0= _e0Þ ¼ g=g0

with time, when the relaxation modulus is measured at the differ-
ent temperatures with the same e0, and the viscosity with the same
_e0.
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